Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?

نویسندگان

  • Jacob Pourati
  • Andrew Maniotis
  • David Spiegel
  • Jonathan L Schaffer
  • James P Butler
  • Jeffrey J Fredberg
  • Donald E Ingber
  • Dimitrijie Stamenovic
  • Ning Wang
چکیده

We tested the hypothesis that mechanical tension in the cytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, we either cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed that there was preexisting CSK tension in these cells and that the actin lattice was a primary stress-bearing component of the CSK. Second, to determine the extent to which that preexisting CSK tension could alter cell deformability, we developed a stretchable cell culture membrane system to impose a rapid mechanical distension (and presumably a rapid increase in CSK tension) on adherent endothelial cells. Altered cell deformability was quantitated as the shear stiffness measured by magnetic twisting cytometry. When membrane strain increased 2.5 or 5%, the cell stiffness increased 15 and 30%, respectively. Disruption of actin lattice with Cyto D abolished this stretch-induced increase in stiffness, demonstrating that the increased stiffness depended on the integrity of the actin CSK. Permeabilizing the cells with saponin and washing away ATP and Ca2+ did not inhibit the stretch-induced stiffening of the cell. These results suggest that the stretch-induced stiffening was primarily due to the direct mechanical changes in the forces distending the CSK but not to ATP- or Ca2+-dependent processes. Taken together, these results suggest preexisting CSK tension is a major determinant of cell deformability in adherent endothelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A prestressed cable network model of the adherent cell cytoskeleton.

A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry ...

متن کامل

Models of cytoskeletal mechanics of adherent cells.

Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical response. Theref...

متن کامل

قابلیت تمایز سلول‌های بنیادی جنین انسان (Royan H5) به سلول‌های همانژیوبلاست در شرایط آزمایشگاهی

Background: Human embryonic stem cells (hESCs) are capable of self-renewal and large-scale expansion. They also have the capacity to differentiate into a variety of cell types including liver, cardiac and neuron cells. However, it is not yet clear whether hESCs can differentiate to hemangioblasts under in-vitro conditions. Hemangioblasts are bipotential progenitors that can generate hematopoiet...

متن کامل

تمایز سلول‌های دندریتیک مشتق از مونوسیت بر روی لایه‌ای از سلول‌های اندوتلیال به‌عنوان لایه تغذیه‌کننده

Background: The innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. Dendritic cells (DCs) play an important role in the initiation of cellular immune responses during their migration from tissues into the lymph nodes where they interact with endothelial cells of lymphatic vessels. We investigated the effect...

متن کامل

Isolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth

Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American journal of physiology

دوره 274 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998